
Situation Calculus Temporally Lifted
Abstractions for Program Synthesis
Giuseppe De Giacomoa,c, Yves Lespéranceb, and Matteo Mancanellic
aUniversity of Oxford, (Oxford, UK), bYork University (Toronto, ON, Canada), cSapienza University (Rome, Italy)

Motivation
Objective: We address the program synthesis task to create concrete pro-
grams from high-level (HL) abstractions of data structure behavior.

Tools: We use nondeterministic SitCalc for the specifications, ConGolog
programs to map HL into LL, and LTL for trace constraints and goals.

Overview: We consider a single (propositional) HL action theory/model
with incomplete information and a concrete LL action theory with several
models and complete information. We formally prove that if an agent has
a strategy to achieve a goal under LTL constraints at the HL, then there
exists a refinement of the strategy at the LL.

Nondeterministic SitCalc, ConGolog and LTL
A Nondeterministic Basic Action Theory (NDBAT) is an extension of clas-
sical BATs handling nondeterministic actions. For each agent actionA(x⃗),
the environment selects a reaction e to produce the system action A(x⃗, e).

ConGolog is a HL programming language that supports complex action
sequences, whose constructs include sequential execution, nondetermin-
istic choice, variable binding, iteration, and interleaving.

LTL is a formalism for expressing temporal properties of reactive systems.
LTL synthesis involves generating a controller that satisfies a LTL goal
and it can be exploited in the context of generalized planning problems.

We impose LTL trace constraints for filtering world histories in NDBATs,
leveraging on the axiomatization for infinite paths and the special symbol
Holds(ψ, p) (meaning that a constraint ψ holds on a path p).

Refinement Mapping m
An NDBAT refinement mapping m is a tuple ⟨ma,ms,mf ,mt⟩. In defin-
ingmt to map HL constraints into LL ones, we suppose that the LL theory
tracks when refinements of HL actions end using a state formula Hlc(s),
meaning that a HL action has just completed in situation s.

m-Simulation

To relate the HL and LL ND-
BATs, we revisit the notion
of bisimulation, sticking to a
unidirectional version called
m-simulation.

Two situations sh and sl are
m-isomorphic iff they evalu-
ate all HL fluents the same.

Two models Mh and Ml are m-similar if the initial situations are m-
isomorphic and the resulting s′l after executing m(A) at the LL is always
m-isomorphic to the resulting s′h after executing A at the HL.

Temporally Lifted Abstraction
Definition 1 Consider an HL NDBAT Dh equipped with a set of HL state con-
straint Ψ, a model Mh of Dh, a LL NDBAT Dl and a refinement mapping m.
We say that (Dh,Mh,Ψ) is a temporally lifted abstraction wrt m if and only if

• Mh m-simulates every model Ml of Dl

• for every high-level LTL trace constraint ψ ∈ Ψ,
Mh |= ∃ph.Starts(ph, S0h) ∧Holds(ψ, ph) and
Dl |= ∀pl.Starts(pl, S0l) ⊃ Holds(mt(ψ), pl)

Example: Minimum in a List
Description: We illustrate our framework addressing the problem of find-
ing the minimum value in a singly-linked list.

LL: We represent a list deterministically with predicates identifying the
head, each node’s value and successor, an iterator and a register. The
actions are common methods manipulating the previous elements.

HL: We abstract details using nondeterministic actions next (move cur-
sor), checkV alue (compare values), and update (update register). The en-
vironment reaction of next tells if the end is reached, and checkV alue tells
if the current node’s value is lower than the registers’.
HL Successor State Axioms: Fragment of Refinement Mapping:
hasNext(do(a, s)) ≡ ms(checkV alue(rh)) =
hasNext(s) ∧ a ̸= next(End) if ¬∃c.iterator(c)
lowerThan(do(a, s)) ≡ then it_set(SuccessIC) else nil endIf
a = checkV alue(LT) ∨ (πc).[iterator(c)?;
lowerThan(s) ∧ mark(c, visited, SuccessMD)];
a ̸= checkV alue(GEQ) ∧ if ∃c, v, k, v′.iterator(c) ∧ node(c, v, k) ∧
a ̸= update(SuccessHU ) ∧ min_register(v′) ∧ v < v′

∀r.a ̸= next(r) then rh = LT ? else rh = GEQ ? endIf

HL LTL Trace Constraint: (□♢doneNext) → ♢¬hasNext

i.e., moving repeatedly to the next node eventually leads to the last one

Results about Strategic Reasoning
A strong plan is a strategy ensuring goal achievement regardless of envi-
ronment reactions. We define AgtCanForceByIf (Goal, Cstr, f, s), mean-
ing that the agent can force a LTL Goal by following strategy f in s if LTL
path constraint Cstr holds:

AgtCanForceByIf (Goal, Cstr, f, s)
.
=

CertExec(f, s) ∧ ∀p.Out(p, f, s) ∧Holds(Cstr, p) ⊃ Holds(Goal, p)
AgtCanForceIf (Goal, Cstr, s)

.
= ∃f.AgtCanForceByIf (Goal, Cstr, f, s)

CertExec(f, s) means that f certainly prescribes executable actions.
Out(p, f, s) means that p is a possible outcome of the agent executing f .

We can prove that if the agent has a strategy to achieve a LTL goal under
some constraints at the HL, then there exists a refinement of the strategy
to achieve the refinement of the goal at the LL.
Theorem 2 Let (Dh,Mh, Cstr) be a temporally lifted abstraction of Dl wrt
refinement mapping m s.t. constraints about actions execution holda, and Goal
be an LTL goal. IfMh |= AgtCanForceIf (Goal, Cstr, S0), then there exist a LL
strategy fl such that Dl |= AgtCanForceByIf (m(Goal), T rue, fl, S0)

afor a comprehensive discussion, please refer to the full paper

Example: Synthesize and Refine a Strategy
HL LTL Goal: Controller:

♢□¬hasNext
□(doneNext→ ⃝doneCheckV alue)
□(lowerThan↔ ⃝doneUpdate)

Here is a strategy that guarantees the satisfaction of the goals:

fh(s) =


checkV alue if doneNext(s)

update if lowerThan(s)

next if ¬lowerThan(s) ∧ hasNext(s)

stop otherwise

The previous controller can be generated automatically by an LTL syn-
thesis engine like Strix, and it is perfectly consistent with fh. By Theorem
2, there must exist a refinement of fh at the LL.

Conclusion
Future works: Scan for details and contacts:

• Create modular libraries of
verified abstractions for
common data structures

• Explore partial automation
of specification generation

1


