
From Abstract Plans to Concrete Strategies:
Synthesizing Controllers in Nondeterministic Domains

via Situation Calculus and Golog

Matteo Mancanelli
thanks to Giuseppe De Giacomo and Yves Lespérance

April 9, 2025

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Table of Contents

1 Formal Background
Situation Calculus
Golog
NDBATs

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Outline

1 Formal Background
Situation Calculus
Golog
NDBATs

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Knowledge Representation for AI Agents

Knowledge Representation (KR) aims at building systems that know about their
world and can act in an informed way within it.

Key principles of KR:

Knowledge is represented formally

Reasoning procedures can derive logical consequences

Reasoning supports informed decision-making

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Robot Example (Domain Description)

A robot, self , inhabits an environment formed by rooms connected by doors (open or
closed). Some rooms are control rooms that contain a button to open all doors.

Example configuration:

Rooms: A, B, C

Control room: B

Doors: dAB (between A and B), dAC (between A and C)

Initially: self is in room A, door dAB is open, and dAC is closed

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Robot Example (Actions)

The robot self can move across rooms and, when in a control room, can press a
button to open all doors.

Actions available:

goto(x) (move to room x)

Precondition: there must be an open door between self ’s current room and x
Effect: self is now in room x

openAllDoors()

Precondition: self must be in a control room
Effect: all closed doors become open

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Robot Example (Predicates)

Static Predicates:

Room(x): x is a room

ControlRoom(x): x is a control room

Door(x , y , z): x is a door between rooms y and z

Dynamic Predicates (Fluents):

Open(x): door x is open

SelfIn(x): robot self is in room x

Instance:

Static Facts:
Room(x) ≡ (x = A ∨ x = B ∨ x = C);ControlRoom(x) ≡ (x = B)
Door(x , y , z) ≡ ((x = dAB ∧ y = A ∧ z = B) ∨ (x = dAB ∧ y = B ∧ z = A) ∨

(x = dAC ∧ y = A ∧ z = C) ∨ (x = dAC ∧ y = C ∧ z = A))

Initial Fluent Values:
Open(x) ≡ (x = dAB);SelfIn(x) ≡ (x = A)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Robot Example (Formalization)

Action Preconditions and Effects:

goto(x)

PRE: ∃r .SelfIn(r) ∧ ∃d .Door(d , r , x) ∧ Open(d)
EFF: SelfIn(x) ∧ ¬∃r . (r = x ∧ SelfIn(r))

openAllDoors()

PRE: ∃r .SelfIn(r) ∧ ControlRoom(r)
EFF: ∀d . pre[Closed(d)] ⊃ Open(d)

Problem 1: We need to refer to both the state before and the state after the action!
Problem 2: Is this enough to fully describe the effects? What about the fluents that
do not change? (Frame Problem)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Situation Calculus

Situation Calculus is a foundational formalism for reasoning about actions and
change. It is a first-order, multi-sorted logical language where states are represented as
situations, defined inductively.

Key Sorts:

Objects: domain elements (e.g., A, B, C , dAB)

Actions: events that progress the system (e.g., goto(x))

Situations: histories of actions, describing world states

Fluents: predicates that may change across situations

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Situation Calculus: Situations

Situations denote states of the world resulting from sequences of actions.

S0: the initial situation (no actions performed yet)

do(a, s): the situation that results from doing action a in situation s

Situations form an infinite tree of histories (built inductively)

Example:

do(goto(C), do(goto(A), do(openAllDoors(), do(goto(B),S0))))

This represents the situation reached by: going to room B, opening all doors, then
going to A, then to C .

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Situation Calculus: Fluents

Fluents are predicates (of functions) whose truth may vary across situations. They are
written as predicate (or functional) symbols taking an additional situation argument.

Examples:

Open(d , s): door d is open in situation s

SelfIn(r , s): robot self is in room r in situation s

Initial Fluent Values:

Open(x , S0) ≡ (x = dAB)

SelfIn(x ,S0) ≡ (x = A)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Situation Calculus: Poss

We use a special predicate symbol Poss(a, s) to express that an action a is executable
in situation s.

Examples:

Poss(goto(B), S0): robot self can move from its current room (which is A in S0)
to room B.
This holds, since dAB is open.

Poss(openAllDoors(),S0): robot self can push the button to open all doors in
situation S0.
This does NOT hold, because A is not a control room.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Running Example: Formalizing Actions

Action: goto(x)

PRE: Poss(goto(x), s) ≡ ∃r . SelfIn(r , s) ∧ ∃d .Door(d , r , x) ∧ Open(d , s)

EFF: SelfIn(x , do(goto(x), s)) ∧ ¬∃r . (r = x ∧ SelfIn(r , do(goto(x), s)))

Action: openAllDoors()

PRE: Poss(openAllDoors(), s) ≡ ∃r .SelfIn(r , s) ∧ ControlRoom(r)

EFF: ∀d .Closed(d , s) ⊃ Open(d , do(openAllDoors(), s))

Note: This solves Problem 1: we can now reference both the situation before (s) and
after (do(a, s)) the action.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Frame Problem

Frame Problem: How do we specify that most fluents do not change after an action?

Examples:

Pushing the button does not change where the robot is:
SelfIn(r , s) ⊃ SelfIn(r , do(openAllDoors(), s))

Moving the robot doesn’t change the state of any door:
Open(d , s) ⊃ Open(d , do(goto(x), s))
¬Open(d , s) ⊃ ¬Open(d , do(goto(x), s))

These are called frame axioms - and we need many of them, one per fluent-action pair!

Problem: This leads to a large number of axioms and is error-prone.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Solution to the Frame Problem

Reiter’s Solution:

Use successor state axioms instead of effect axioms; one successor state axiom per
fluent.

Use precondition axioms for specifying preconditions; one precondition axiom per
action.

The length of a successor state axiom is roughly proportional to the number of
actions which affect the truth value of the fluent.

Note: The conciseness and perspicuity of the solution relies on:

quantification over actions

the assumption that relatively few actions affect each fluent

the completeness assumption for effects

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Successor State Axioms

Step 1: Normalize effect axioms (for fluent F):

Positive effect: Φ+
F (x⃗ , a, s) ⊃ F (x⃗ , do(a, s))

Negative effect: Φ−
F (x⃗ , a, s) ⊃ ¬F (x⃗ , do(a, s))

Step 2: Enforce explanation closure:

If F becomes true:
¬F (x⃗ , s) ∧ F (x⃗ , do(a, s)) ⊃ Φ+

F (x⃗ , a, s)

If F becomes false:
F (x⃗ , s) ∧ ¬F (x⃗ , do(a, s)) ⊃ Φ−

F (x⃗ , a, s)

Step 3: Define successor state axiom:

F (x⃗ , do(a, s)) ≡ Φ+
F (x⃗ , a, s) ∨ (F (x⃗ , s) ∧ ¬Φ−

F (x⃗ , a, s))

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Running Example: Successor State Axioms

Successor State Axiom for SelfIn(x , s):

SelfIn(x , do(a, s)) ≡ (a = goto(x)) ∨ (SelfIn(x , s) ∧ ¬∃y . (a = goto(y) ∧ y ̸= x))

Successor State Axiom for Open(d , s):

Open(d , do(a, s)) ≡ (a = openAllDoors() ∧ Closed(d , s)) ∨ (Open(d , s) ∧ ¬False)

Note: These axioms compactly encode both the effects and the persistence of fluents.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Comparison with STRIPS

STRIPS operator for goto:

PRE: SelfIn(f) ∧ Door(d , f , t) ∧ Open(d)

ADD: SelfIn(t)

DEL: SelfIn(f)

STRIPS Representation Characteristics:

States are represented as databases of ground atoms

Actions update these databases by adding/removing atoms

Assumes fully known initial state

Not a full logic: lacks quantifiers, functions, and expressive reasoning

By contrast, Situation Calculus is a proper logical language with formal semantics and
supports reasoning beyond state updates.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Situation Calculus: Basic Action Theories (BATs)

Basic Action Theory (BAT)

D = Σ ∪ Duna ∪ Dpre ∪ Dssa ∪ DS0

Components:

Σ: foundational axioms for situations (SOL)

Duna: unique names axioms for actions

e.g., A1(x⃗) ̸= A2(y⃗) for distinct action names A1 and A2

Dpre : precondition axioms

Poss(A(x⃗), s) ≡ Φpre
A (x⃗ , s)

Dssa: successor state axioms

F (x⃗ , do(a, s)) ≡ Φssa
F (x⃗ , a, s)

DS0 : initial situation description

Only S0 is used in fluents within DS0

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Reasoning in Situation Calculus

Key Reasoning Tasks:

Satisfiability: is the basic action theory consistent?

Projection: what holds after executing a sequence of actions?

Executability: can a sequence of actions be legally performed?

Planning: find a sequence of actions that achieves a desired goal

Regression: reduces reasoning about future situations (second-order) to reasoning
about the initial situation only (first-order)

Transforms formulas about do(a, s) into equivalent ones about s

Achieved by replacing fluents using their successor state axioms

By iterating, we regress any future situation back to S0

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Limitations: Temporal Reasoning

Regression is not sufficient for more expressive temporal properties:

“There exists a future situation where α holds”

“α always holds in all reachable situations”

“Eventually, no matter what actions are taken, α will hold”

“Whenever α holds, then eventually β will hold”

Beyond Projection and Executability: When we deal with such temporal properties
we need verification techniques, most of which assume finite number of states (i.e.,
finite object domain in the SitCalc).

If we assume finite number of objects, then we can model check SitCalc Action
Theories!

These require temporal logic and verification techniques.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

High-Level Programming in the Situation Calculus

Motivation: We want to be able to:

Express complex actions/programs for an agent.

Reason about their executions, preconditions, and effects.

Use these programs to control the agent’s behavior.

High-Level Programming serves as a middle ground between planning and scripting:

Instead of complete planning, we let the agent execute a high-level plan or
program.

We allow nondeterministic programs to leave certain choices to be resolved at
execution time through reasoning.

This approach supports both deliberation and full scripting when appropriate.

It relates closely to work on planning with domain-specific search control.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Golog

Golog constructs include:

α (primitive action)
ϕ? (test a condition)
δ1; δ2 (sequential composition)
δ1 | δ2 (nondeterministic branching)
πx⃗ . δ (nondeterministic choice of arguments)
δ∗ (nondeterministic iteration)

Program Execution Task: Given a domain theory D and a program δ, find a
sequence of actions a⃗ such that:

D |= Do(δ, S0, do (⃗a, S0))

Here, Do(δ, s, s ′) means that program δ, when executed starting in situation s, can
legally terminate in situation s ′.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Nondeterminism in Golog

A nondeterministic program may have several possible executions. For example:

Let ndp1 = (a | b); c .
Assuming all actions are executable, we have:

Do(ndp1,S0, s) ≡
(
s = do([a, c],S0)

)
∨
(
s = do([b, c], S0)

)
When a test condition or action precondition fails, the interpreter backtracks to try
alternative nondeterministic choices. For instance:

Let ndp2 = (a | b); c ;P?.
If the test P is initially true but becomes false when a is executed, then:

Do(ndp2, S0, s) ≡
(
s = do([b, c], S0)

)
The interpreter will arrive at this result by backtracking.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Golog Semantics

Two complementary semantics for Golog:

Standard Semantics: based on the predicate Do(δ, s, s ′)

Computational Semantics: based on transition systems, defined via:

Trans(δ, s, δ′, s ′): The configuration (δ, s) can take a single execution step,
transitioning to (δ′, s ′) (a primitive action or a test).
Final(δ, s): The configuration (δ, s) may be considered completed.

Note that Do(δ, s, s ′) can be defined in terms of Trans∗ and Final , where Trans∗ is the
transitive closure of Trans

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Nondeterministic Situation Calculus

Motivation:

In standard Situation Calculus, atomic actions are deterministic

The resulting situation from doing a in s is uniquely do(a, s)

But many real-world actions are nondeterministic — e.g., flipping a coin

Prior solutions don’t distinguish between agent choices and environment outcomes

Nondeterministic Situation Calculus:

Simple, elegant extension of standard SitCalc to capture nondeterminism

Preserves Reiter’s solution to the frame problem

Allows regression for projection queries

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Nondeterministic Situation Calculus

The Approach:

Outcome of a nondeterministic action is determined by the agent action and the
environment’s reaction

Every action type/function A(x⃗ , e) takes an additional environment reaction
parameter e ranging over new sort Reaction

We call A(x⃗ , e) a system action, and the relative reaction-suppressed version A(x⃗)
an agent action

This lets us quantify separately over agent decisions and environmental responses

The nondeterminism associated with agent choices is angelic (goal-directed), and
that associated with environment choices is devilish (adversarial)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Nondeterministic Basic Action Theories (NDBATs)

A Nondeterministic Basic Action Theory (NDBAT) is a BAT where:

Each action has a reaction parameter e: A(x⃗ , e)

For each agent action, we have an agent action precondition:

Possag (A(x⃗), s)
.
= ϕagPossA (x⃗ , s)

Reaction independence: agent action precondition must be independent of any
environment reaction:

∀e.Poss(A(x⃗ , e), s) ⊃ Possag (A(x⃗), s)

Reaction existence: if Possag holds, some environment reaction must make the
system action possible:

Possag (A(x⃗), s) ⊃ ∃e.Poss(A(x⃗ , e), s)

These conditions must be entailed by the theory to qualify as an NDBAT

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Structure of NDBATs

As in standard SitCalc, we define:

System action preconditions: specify how environment can react

Successor state axioms: describe fluent changes under system actions

Initial situation axioms: state what holds in S0

Unique names + foundational axioms

Key difference: agent actions are abstracted away from actual outcomes — outcomes
are mediated by reactions.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

FOND Planning

FOND = Fully Observable Nondeterministic Planning

Planning with actions that may have multiple possible outcomes

Goal: synthesize a strong plan, i.e. a strategy that succeeds no matter how the
environment behaves

We represent a strategy as a function f from situations to agent actions

We define AgtCanForceBy(Goal , s, f) to state that f forces Goal in s

It has been shown that any FOND domain can be encoded as an NDBAT

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Outline

1 Formal Background

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Planning Setting

Environment Model (DOM):
The domain specifies the environment’s behaviors in response to agent’s action.
DOM is expressed by specific formalisms such as STRIPS, ADL, and PDDL.
DOM generates a (possibly nondeterministic) transition system

Agent Task (GOAL):
The GOAL specifies the task to achieve.
It is expressed as reaching a state of the domain with desired properties.

Planning Problem:
Find a strategy that ensures the GOAL is met within the domain

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Generalized Planning

Key Features:

A domain class defines a (possibly infinite) family of planning problems

Each instance differs in its specific initial state or set of objects

The strategy must solve every instance in the class

Goal: Synthesize a single strategy that solves multiple instances of a planning
problem.

Challenge:

Solutions must generalize beyond fixed initial states

Need to reason over a symbolic abstraction that captures all instances

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Our Approach

Objective: We introduce a novel formal framework to address Generalized Planning
problems by generating a strategy that solves multiple (possibly infinite) similar
planning problem instances.

Framework Principles:

We use an abstraction to encompass all problems instances

Each instance is a model of a concrete LL action theory

A HL action theory/model abstracts away LL details

We can synthetize automatically a strategy at the HL

We formally prove that there exists a refinement of the strategy at the LL to solve
all problem instances

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Refinement Mapping m

A refinement mapping m is a tuple ⟨ma,ms ,mf ,mt⟩. In defining mt to map HL
constraints, we suppose that the LL theory tracks when refinements of HL actions end
using a state formula Hlc(s), meaning that a HL action has just been completed in
situation s.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

m-Simulation

Two situations sh and sl are m-isomorphic iff they evaluate all HL fluents the same.
Two models Mh and Ml are m-similar if (i) the initial situations are m-isomorphic and
(ii) the resulting s ′l after executing m(A) at the LL is m-isomorphic to the resulting s ′h
after executing A at the HL.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Temporally Lifted Abstractions

Consider an HL NDBAT Dh equipped with a set of HL state constraint Ψ, a model Mh

of Dh, a LL NDBAT Dl and a refinement mapping m.

Definition

We have a temporally lifted abstraction wrt m if and only if

a model Mh of Dh m-simulates every model Ml of Dl

for every high-level LTL trace constraint ψ,
Mh |= ∃ph.Starts(ph,S0h) ∧ Holds(ψ, ph) and
Dl |= ∀pl .Starts(pl , S0l) ⊃ Holds(mt(ψ), pl)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Example (Minimum in a List)

Description: We illustrate our framework addressing the problem of finding the
minimum value in a singly-linked list.

LL: A list is described deterministically by its head and each node’s value and
successor. We also use an iterator and a register.

HL: We abstract details using nondeterministic actions: next (moves the cursor) and
update (updates the register). The environment reaction of next indicates if the end
is reached.

LTL Trace Constraint: (□♢doneNext) → ♢¬hasNext
moving repeatedly to the next node eventually leads to the last one

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Temporally Lifted Abstractions

We define AgtCanForceByIf (Goal ,Cstr , f , s), meaning that the agent can force a LTL
Goal by following strategy f in s if LTL path constraint Cstr holds.

Theorem

Consider a temporally lifted abstraction and a LTL goal.

If Mh |= ∃fh.AgtCanForceIf (Goal ,Cstr , fh,S0),
then there exist a refined strategy fl such that
Dl |= AgtCanForceByIf (m(Goal),True, fl ,S0)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Example Cont. (Minimum in a List)

HL LTL Goal:
♢□¬hasNext
□(lowerThan ↔ ⃝doneUpdate)

The controller can be generated automatically by an LTL synthesis engine like Strix.
By the theorem, we know that there exists a refinement of this strategy at the LL.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Outline

1 Formal Background

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Deterministic Domains and Transition Systems

A deterministic domain D = (F ,A, I) induces a transition system:

TD = (S ,A, s0, α, δ)

where:

F : fluents (propositional variables)

A: actions

S = 2F : set of all states

s0: initial state

α(s) ⊆ A: available actions in s

δ(s, a) = s ′: deterministic state transition

A trace is a sequence:
s0, a1, s1, . . . , an, sn

where each ai ∈ α(si) and si+1 = δ(si , ai).
Matteo Mancanelli From Abstract Plans to Concrete Strategies

Game Arena Induced by a Nondeterministic Domain

In the nondeterministic setting, we model the domain as a game arena:

TD = (2F ,A, s0, α, δ)

F : fluents controlled by the environment

A: agent actions

s0: initial state

α(s) ⊆ A: actions available in s

δ(s, a, s ′): environment nondeterministically picks s ′

Agent: chooses action a
Environment: chooses resulting state s ′

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Planning in Nondeterministic Domains

Given a nondeterministic domain D and a goal G :

Find an agent strategy σa such that, for every compliant environment strategy σe ,
we have that play(σa, σe) = s0, a1, . . . , an, sn satisfies sn |= G

That is: G must hold at the end of every possible execution trace

Winning strategy: a strategy σa that guarantees reaching G regardless of how the
environment behaves

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Program Synthesis

Goal: Mechanically translate a formal specification into a program that is guaranteed
to satisfy it.

Classical vs. Reactive Synthesis:

Classical: Synthesize transformational (batch) programs

Reactive: Synthesize controllers or protocols for ongoing interactive computation

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Synthesis

Agent and environment play a game with LTL/LTLf specs as winning condition

Agent picks controllable output Y ∈ 2Y

Environment picks uncontrollable input X ∈ 2X

A round consists of both choosing their values

A play is a finite trace τ over X ∪ Y

Agent decides when to stop

Specification is an LTLf formula φ

Agent wins if τ |= φ

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Synthesis and Planning from LTLf Specifications

LTLf formulas can be compiled into finite-state automata

From this, we can perform:

Synthesis: create controllers that guarantee satisfaction of φ
Planning: build a strong policy from a FOND domain + LTLf goal

Both are solved as 2-player games

Recent work extends this framework:

richer logics (e.g., PPLTL)
stochastic / fair / partially observable environments

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Overview

Context and motivation:

Automated agent synthesis has been extensively studied in temporal logic
frameworks

LTLf synthesis is effective for reactive systems but lacks explicit procedural
constructs

We introduce a graph-based synthesis framework tailored for procedural Golog
specifications

Core Focus of This Work:

Leveraging syntactic closure for efficient Golog synthesis

Constructing program graphs to systematically represent program executions

Integrating program graphs within FOND domains

Proving the computational feasibility of our approach

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Golog

Syntactic closure: after any one-step transition, the set of all possible remaining
programs is finite. Following (De Giacomo et. al., 2016), it is possible to define
inductively the syntactic closure Γδ0 of a program δ0, as follows:

δ0, nil ∈ Γδ0
if δ1; δ2 ∈ Γδ0 and δ′1 ∈ Γδ1 , then δ

′
1; δ2 ∈ Γδ0 and Γδ2 ⊆ Γδ0

if δ1 | δ2 ∈ Γδ0 , then Γδ1 , Γδ2 ⊆ Γδ0
if δ∗ ∈ Γδ0 , then δ; δ

∗ ∈ Γδ0

Theorem

The syntactic closure Γδ0 is linear in the size of the program δ0.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Program Graph

To construct the graph G of a Golog program, we leverage on the auxiliary definition of
T and F , based on Trans and Final:

T (a, a) = {(Poss(a), nil)}
T (a, b) = {}
T (φ?, a) = {}
T (δ1; δ2, a) = {(¬F (δ1) ∧ φ, δ′1; δ2) | (φ, δ′1) ∈ T (δ1, a)} ∪

{(F (δ1) ∧ φ, δ′2) | (φ, δ′2) ∈ T (δ2, a)}
T (δ1|δ2, a) = T (δ1, a) ∪ T (δ2, a)
T (δ∗, a) = {(¬F (δ) ∧ φ, δ′; δ∗) | (φ, δ′) ∈ T (δ, a)}

F (a) = False
F (φ?) = φ
F (δ1; δ2) = F (δ1) ∧ F (δ2)
F (δ1|δ2) = F (δ1) ∨ F (δ2)
F (δ∗) = True

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Program Graph

Now we can introduce the program graph

G = ⟨Φ×A,Q, q0, σ,L⟩

where

Φ is a Boolean formula over tests and Poss

A is the set of actions

Φ×A is the alphabet

Q = Γδ0 is the syntactic closure of δ0

q0 = δ0 is the initial program

σ(q, φ, a, q′) iff (φ, q′) ∈ T (q, a)

L(q) = F (q) indicates that the state q is assigned a label according to F

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Program Graph

Theorem

The number of nodes in G is linear in the size of the program δ0. The number of edges
in G is polynomial in the size of δ0.

Definition

We say that a program is situation determined if

SituationDetermined(δ, s)
.
= ∀s ′, δ′, δ′′.

Trans∗(δ, s, δ′, s ′) ∧ Trans∗(δ, s, δ′′, s ′) ⊃ δ′=δ′′

Theorem

If δ0 is situation determined, then

σ(q, φ1, a, q
′
1) ∧ σ(q, φ2, a, q

′
2) ∧ φ1 ∧ φ2 ⊃ q′1 = q′2

and the characteristic graph becomes deterministic.

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Example

Program: ϕ?; a; (b; c)∗

ϕ?; a; (b; c)∗ nil ; (b; c)∗

nil ; c ; (b; c)∗

L = False

L = True

L = False

(ϕ ∧ Poss(a), a)

(Poss(b), b) (Poss(c), c)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

FOND Domain

The DFA for a FOND Domain D is:

AD = ⟨2F∪A, 2F ∪ {sinit}, sinit , ϱ,F ⟩

where:

2F∪A is the alphabet (actions A include dummy start action)

2F ∪ {sinit} is the set of states

sinit is the dummy initial state

F = 2F (all states of the domain are final)

ϱ(s, (a, s ′)) = s ′ with a ∈ α(s) and ρ(s, a, s ′)

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Cross Product

Taking the cross product of δ0 and the FOND domain D we get

A = ⟨A × 2F × Γδ0 , Γδ0 × 2F , (δ0, s0),Tr ,Fin⟩

where

A× 2F × Γδ0 is an alphabet

Γδ0 × 2F is a set of states

(δ0, s0) is the initial state

Tr((δ, s), a, s ′, δ′) = (δ′, s ′), where ∃φ.σ(δ, φ, a, δ′) ∧ s |= φ and ρ(s, a, s ′), is the
transition function

Fin = {(δ, s) | s |= F (δ)} is the set of final states

Matteo Mancanelli From Abstract Plans to Concrete Strategies

Cross Product

Theorem

If δ0 is situation determined, then

Tr((δ, s), a, s ′, δ′1) ∧ Tr((δ, s), a, s ′, δ′2) ⊃ δ′1 = δ′2

If δ0 is situation-determined, we can simplify the DFA into:

A = ⟨A × 2F , Γδ0 × 2F , (δ0, s0),Tr ,Fin⟩

where

A× 2F is an alphabet

Tr((δ, s), a, s ′) = (δ′, s ′), where ∃φ.σ(δ, φ, a, δ′) ∧ s |= φ and ρ(s, a, s ′)

Fin = {(δ, s) | s |= F (δ)}

Matteo Mancanelli From Abstract Plans to Concrete Strategies

	Formal Background
	Situation Calculus
	Golog
	NDBATs

	Abstractions for Generalized Planning
	Automata-based Golog Synthesis
	Planning and Synthesis in FOND Domains
	Golog Synthesis

