From Abstract Plans to Concrete Strategies: Synthesizing Controllers in Nondeterministic Domains via Situation Calculus and Golog

Matteo Mancanelli

thanks to Giuseppe De Giacomo and Yves Lespérance

April 9, 2025

Matteo Mancanelli From Abstract Plans to Concrete Strategies

イロト イボト イヨト イヨト

Formal Background

- Situation Calculus
- Golog
- NDBATs

Matteo Mancanelli From Abstract Plans to Concrete Strategies

イロト イポト イヨト イヨト

ъ

Formal Background

- Situation Calculus
- Golog
- NDBATs

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

Matteo Mancanelli From Abstract Plans to Concrete Strategies

イロト イポト イヨト イヨト

ъ

Knowledge Representation (KR) aims at building systems that know about their world and can act in an informed way within it.

Key principles of KR:

- Knowledge is represented formally
- Reasoning procedures can derive logical consequences
- Reasoning supports informed decision-making

・ 同下 ・ ヨト ・ ヨト

A robot, *self*, inhabits an environment formed by rooms connected by doors (open or closed). Some rooms are control rooms that contain a button to open all doors.

Example configuration:

- Rooms: A, B, C
- Control room: B
- Doors: d_{AB} (between A and B), d_{AC} (between A and C)
- Initially: self is in room A, door d_{AB} is open, and d_{AC} is closed

(日)

The robot *self* can **move across rooms** and, when in a control room, can **press a button to open all doors**.

Actions available:

• *goto*(*x*)

(move to room x)

イロト イボト イヨト イヨト

з.

- Precondition: there must be an open door between *self*'s current room and x
- Effect: *self* is now in room x
- openAllDoors()
 - Precondition: *self* must be in a control room
 - Effect: all closed doors become open

Robot Example (Predicates)

Static Predicates:

- Room(x): x is a room
- ControlRoom(x): x is a control room
- Door(x, y, z): x is a door between rooms y and z

Dynamic Predicates (Fluents):

- Open(x): door x is open
- Selfln(x): robot self is in room x

Instance:

- Static Facts:
 - $Room(x) \equiv (x = A \lor x = B \lor x = C); ControlRoom(x) \equiv (x = B)$
 - $Door(x, y, z) \equiv ((x = d_{AB} \land y = A \land z = B) \lor (x = d_{AB} \land y = B \land z = A) \lor (x = d_{AC} \land y = A \land z = C) \lor (x = d_{AC} \land y = C \land z = A))$
- Initial Fluent Values:
 - $Open(x) \equiv (x = d_{AB}); SelfIn(x) \equiv (x = A)$

・ロット (雪) () () () ()

э

Action Preconditions and Effects:

- goto(x)
 - **PRE:** $\exists r. SelfIn(r) \land \exists d. Door(d, r, x) \land Open(d)$
 - **EFF:** $Selfln(x) \land \neg \exists r. (r = x \land Selfln(r))$
- openAllDoors()
 - **PRE:** $\exists r. SelfIn(r) \land ControlRoom(r)$
 - **EFF:** $\forall d. pre[Closed(d)] \supset Open(d)$

Problem 1: We need to refer to both the state before and the state after the action!
Problem 2: Is this enough to fully describe the effects? What about the fluents that do not change? (Frame Problem)

<日

<日</p>

Situation Calculus is a foundational formalism for reasoning about actions and change. It is a first-order, multi-sorted logical language where states are represented as **situations**, defined inductively.

Key Sorts:

- **Objects:** domain elements (e.g., A, B, C, d_{AB})
- Actions: events that progress the system (e.g., goto(x))
- Situations: histories of actions, describing world states
- Fluents: predicates that may change across situations

・ 同 ト ・ ヨ ト ・ ヨ ト

Situations denote states of the world resulting from sequences of actions.

- S_0 : the initial situation (no actions performed yet)
- do(a, s): the situation that results from doing action a in situation s
- Situations form an infinite tree of histories (built inductively)

Example:

 $do(goto(C), do(goto(A), do(openAllDoors(), do(goto(B), S_0))))$

This represents the situation reached by: going to room B, opening all doors, then going to A, then to C.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Fluents are predicates (of functions) whose truth may vary across situations. They are written as predicate (or functional) symbols taking an additional situation argument.

Examples:

- Open(d, s): door d is open in situation s
- Selfln(r, s): robot self is in room r in situation s

Initial Fluent Values:

- $Open(x, S_0) \equiv (x = d_{AB})$
- $SelfIn(x, S_0) \equiv (x = A)$

・ 同下 ・ ヨト ・ ヨト

э.

We use a special predicate symbol Poss(a, s) to express that an action a is executable in situation s.

Examples:

- Poss(goto(B), S₀): robot self can move from its current room (which is A in S₀) to room B.
 This holds, since d_{AB} is open.
- Poss(openAllDoors(), S₀): robot self can push the button to open all doors in situation S₀.
 This does NOT hold, because A is not a control room.

(日)

Action: goto(x)

- **PRE:** $Poss(goto(x), s) \equiv \exists r. SelfIn(r, s) \land \exists d. Door(d, r, x) \land Open(d, s)$
- **EFF:** $Selfln(x, do(goto(x), s)) \land \neg \exists r. (r = x \land Selfln(r, do(goto(x), s)))$

Action: openAllDoors()

- **PRE:** $Poss(openAllDoors(), s) \equiv \exists r. SelfIn(r, s) \land ControlRoom(r)$
- **EFF**: $\forall d. Closed(d, s) \supset Open(d, do(openAllDoors(), s))$

Note: This solves Problem 1: we can now reference both the situation before (s) and after (do(a, s)) the action.

・ 何 ト ・ ヨ ト ・ ヨ ト

э.

Frame Problem: How do we specify that most fluents do not change after an action?

Examples:

- Pushing the button does not change where the robot is: SelfIn(r, s) ⊃ SelfIn(r, do(openAllDoors(), s))
- Moving the robot doesn't change the state of any door: *Open(d,s)* ⊃ *Open(d,do(goto(x),s))* ¬*Open(d,s)* ⊃ ¬*Open(d,do(goto(x),s))*

These are called frame axioms - and we need many of them, one per fluent-action pair!

Problem: This leads to a large number of axioms and is error-prone.

э.

Reiter's Solution:

- Use successor state axioms instead of effect axioms; one successor state axiom per fluent.
- Use precondition axioms for specifying preconditions; one precondition axiom per action.
- The length of a successor state axiom is roughly proportional to the number of actions which affect the truth value of the fluent.

Note: The conciseness and perspicuity of the solution relies on:

- quantification over actions
- the assumption that relatively few actions affect each fluent
- the completeness assumption for effects

・ 戸 ト ・ ヨ ト ・ ヨ ト

Successor State Axioms

Step 1: Normalize effect axioms (for fluent *F*):

- Positive effect: $\Phi_F^+(\vec{x}, a, s) \supset F(\vec{x}, do(a, s))$
- Negative effect: $\Phi_F^-(\vec{x}, a, s) \supset \neg F(\vec{x}, do(a, s))$

Step 2: Enforce explanation closure:

- If F becomes true: $\neg F(\vec{x}, s) \land F(\vec{x}, do(a, s)) \supset \Phi_F^+(\vec{x}, a, s)$
- If F becomes false: $F(\vec{x},s) \land \neg F(\vec{x},do(a,s)) \supset \Phi_F^-(\vec{x},a,s)$

Step 3: Define successor state axiom:

$$F(\vec{x}, do(a, s)) \equiv \Phi_F^+(\vec{x}, a, s) \lor (F(\vec{x}, s) \land \neg \Phi_F^-(\vec{x}, a, s))$$

• • = • • = •

э

Successor State Axiom for Selfln(x, s):

 $SelfIn(x, do(a, s)) \equiv (a = goto(x)) \lor (SelfIn(x, s) \land \neg \exists y. (a = goto(y) \land y \neq x))$

Successor State Axiom for Open(d, s):

 $Open(d, do(a, s)) \equiv (a = openAllDoors() \land Closed(d, s)) \lor (Open(d, s) \land \neg False)$

Note: These axioms compactly encode both the effects and the persistence of fluents.

Comparison with STRIPS

STRIPS operator for goto:

- **PRE:** $SelfIn(f) \land Door(d, f, t) \land Open(d)$
- **ADD**: SelfIn(t)
- **DEL**: SelfIn(f)

STRIPS Representation Characteristics:

- States are represented as databases of ground atoms
- Actions update these databases by adding/removing atoms
- Assumes fully known initial state
- Not a full logic: lacks quantifiers, functions, and expressive reasoning

By contrast, Situation Calculus is a proper logical language with formal semantics and supports reasoning beyond state updates.

(4月) (4日) (4日)

Basic Action Theory (BAT)

$$D = \Sigma \cup D_{\textit{una}} \cup D_{\textit{pre}} \cup D_{\textit{ssa}} \cup D_{S_0}$$

Components:

- Σ : foundational axioms for situations (SOL)
- D_{una}: unique names axioms for actions
 - e.g., $A_1(\vec{x}) \neq A_2(\vec{y})$ for distinct action names A_1 and A_2
- D_{pre}: precondition axioms
 - $Poss(A(\vec{x}), s) \equiv \Phi_A^{pre}(\vec{x}, s)$
- *D*_{ssa}: successor state axioms
 - $F(\vec{x}, do(a, s)) \equiv \Phi_F^{ssa}(\vec{x}, a, s)$
- D_{S_0} : initial situation description
 - Only S_0 is used in fluents within D_{S_0}

Key Reasoning Tasks:

- Satisfiability: is the basic action theory consistent?
- Projection: what holds after executing a sequence of actions?
- Executability: can a sequence of actions be legally performed?
- Planning: find a sequence of actions that achieves a desired goal

Regression: reduces reasoning about future situations (second-order) to reasoning about the initial situation only (first-order)

- Transforms formulas about do(a, s) into equivalent ones about s
- Achieved by replacing fluents using their successor state axioms
- By iterating, we regress any future situation back to S_0

・ 戸 ト ・ ヨ ト ・ ヨ ト

Limitations: Temporal Reasoning

Regression is not sufficient for more expressive temporal properties:

- "There exists a future situation where α holds"
- " α always holds in all reachable situations"
- "Eventually, no matter what actions are taken, α will hold"
- "Whenever α holds, then eventually β will hold"

Beyond Projection and Executability: When we deal with such temporal properties we need verification techniques, most of which assume finite number of states (i.e., finite object domain in the SitCalc).

• If we assume finite number of objects, then we can model check SitCalc Action Theories!

These require temporal logic and verification techniques.

э.

High-Level Programming in the Situation Calculus

Motivation: We want to be able to:

- Express complex actions/programs for an agent.
- Reason about their executions, preconditions, and effects.
- Use these programs to control the agent's behavior.

High-Level Programming serves as a middle ground between planning and scripting:

- Instead of complete planning, we let the agent execute a high-level plan or program.
- We allow nondeterministic programs to leave certain choices to be resolved at execution time through reasoning.
- This approach supports both deliberation and full scripting when appropriate.
- It relates closely to work on planning with domain-specific search control.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Golog constructs include:

lpha	(primitive action)
ϕ ?	(test a condition)
$\delta_1; \delta_2$	(sequential composition)
$\delta_1 \mid \delta_2$	(nondeterministic branching)
$\pi \vec{x}. \delta$	(nondeterministic choice of arguments)
δ^*	(nondeterministic iteration)

Program Execution Task: Given a domain theory *D* and a program δ , find a sequence of actions \vec{a} such that:

 $D \models Do(\delta, S_0, do(\vec{a}, S_0))$

Here, $Do(\delta, s, s')$ means that program δ , when executed starting in situation s, can legally terminate in situation s'.

э

Nondeterminism in Golog

A nondeterministic program may have several possible executions. For example:

- Let $ndp_1 = (a | b); c$.
- Assuming all actions are executable, we have:

$$Do(ndp_1, S_0, s) \equiv (s = do([a, c], S_0)) \lor (s = do([b, c], S_0))$$

When a test condition or action precondition fails, the interpreter backtracks to try alternative nondeterministic choices. For instance:

- Let $ndp_2 = (a | b); c; P?$.
- If the test P is initially true but becomes false when a is executed, then:

$$Do(ndp_2, S_0, s) \equiv (s = do([b, c], S_0))$$

• The interpreter will arrive at this result by backtracking.

Two complementary semantics for Golog:

- Standard Semantics: based on the predicate $Do(\delta, s, s')$
- Computational Semantics: based on transition systems, defined via:
 - Trans(δ, s, δ', s'): The configuration (δ, s) can take a single execution step, transitioning to (δ', s') (a primitive action or a test).
 - Final (δ, s) : The configuration (δ, s) may be considered completed.

Note that $Do(\delta, s, s')$ can be defined in terms of *Trans*^{*} and *Final*, where *Trans*^{*} is the transitive closure of *Trans*

・ロット (雪) () () () ()

э.

Motivation:

- In standard Situation Calculus, atomic actions are deterministic
- The resulting situation from doing a in s is uniquely do(a, s)
- But many real-world actions are nondeterministic e.g., flipping a coin
- Prior solutions don't distinguish between agent choices and environment outcomes

Nondeterministic Situation Calculus:

- Simple, elegant extension of standard SitCalc to capture nondeterminism
- Preserves Reiter's solution to the frame problem
- Allows regression for projection queries

・ 何 ト ・ ヨ ト ・ ヨ ト

The Approach:

- Outcome of a nondeterministic action is determined by the agent action and the environment's reaction
- Every action type/function $A(\vec{x}, e)$ takes an additional environment reaction parameter *e* ranging over new sort Reaction
- We call $A(\vec{x}, e)$ a system action, and the relative reaction-suppressed version $A(\vec{x})$ an agent action
- This lets us quantify separately over agent decisions and environmental responses
- The nondeterminism associated with agent choices is angelic (goal-directed), and that associated with environment choices is devilish (adversarial)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Nondeterministic Basic Action Theories (NDBATs)

- A Nondeterministic Basic Action Theory (NDBAT) is a BAT where:
 - Each action has a reaction parameter $e: A(\vec{x}, e)$
 - For each agent action, we have an agent action precondition:

$$Poss_{ag}(A(\vec{x}), s) \doteq \phi_A^{agPoss}(\vec{x}, s)$$

• Reaction independence: agent action precondition must be independent of any environment reaction:

$$\forall e. \mathit{Poss}(\mathit{A}(\vec{x}, e), s) \supset \mathit{Poss}_{\mathit{ag}}(\mathit{A}(\vec{x}), s)$$

• Reaction existence: if *Poss_{ag}* holds, some environment reaction must make the system action possible:

$$Poss_{ag}(A(\vec{x}), s) \supset \exists e. Poss(A(\vec{x}, e), s)$$

• These conditions must be entailed by the theory to qualify as an NDBAT

As in standard SitCalc, we define:

- System action preconditions: specify how environment can react
- Successor state axioms: describe fluent changes under system actions
- Initial situation axioms: state what holds in S_0
- Unique names + foundational axioms

Key difference: agent actions are abstracted away from actual outcomes — outcomes are mediated by reactions.

(日)

FOND = Fully Observable Nondeterministic Planning

- Planning with actions that may have multiple possible outcomes
- Goal: synthesize a **strong plan**, i.e. a strategy that succeeds **no matter how** the environment behaves
- We represent a strategy as a function f from situations to agent actions
- We define AgtCanForceBy(Goal, s, f) to state that f forces Goal in s
- It has been shown that any FOND domain can be encoded as an NDBAT

(4回) (4回) (4回)

Formal Background

2 Abstractions for Generalized Planning

3 Automata-based Golog Synthesis

・ロト ・御 ト ・ ヨト ・ ヨト

ъ

• Environment Model (DOM):

- The domain specifies the environment's behaviors in response to agent's action.
- DOM is expressed by specific formalisms such as STRIPS, ADL, and PDDL.
- DOM generates a (possibly nondeterministic) transition system

• Agent Task (GOAL):

- The GOAL specifies the task to achieve.
- It is expressed as reaching a state of the domain with desired properties.

• Planning Problem:

• Find a strategy that ensures the GOAL is met within the domain

・ロット (雪) () () () ()

э.

Key Features:

- A domain class defines a (possibly infinite) family of planning problems
- Each instance differs in its specific initial state or set of objects
- The strategy must solve every instance in the class

Goal: Synthesize a single strategy that solves **multiple instances** of a planning problem.

Challenge:

- Solutions must generalize beyond fixed initial states
- Need to reason over a symbolic abstraction that captures all instances

・ 同 ト ・ ヨ ト ・ ヨ ト

Objective: We introduce a novel formal framework to address Generalized Planning problems by generating a strategy that solves multiple (possibly infinite) similar planning problem instances.

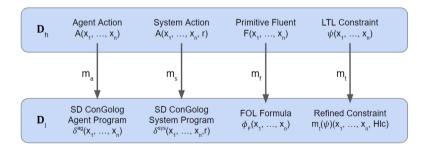
Framework Principles:

- We use an abstraction to encompass all problems instances
- Each instance is a model of a concrete LL action theory
- A HL action theory/model abstracts away LL details
- We can synthetize automatically a strategy at the HL
- We formally prove that there exists a refinement of the strategy at the LL to solve all problem instances

・ 同下 ・ ヨト ・ ヨト

Refinement Mapping m

A refinement mapping *m* is a tuple $\langle m_a, m_s, m_f, m_t \rangle$. In defining m_t to map HL constraints, we suppose that the LL theory tracks when refinements of HL actions end using a state formula Hlc(s), meaning that a HL action has just been completed in situation *s*.

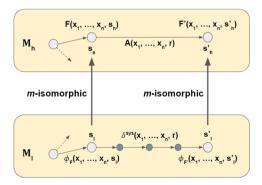


・ロット (雪) () () () ()

э

m-Simulation

Two situations s_h and s_l are **m-isomorphic** iff they evaluate all HL fluents the same. Two models M_h and M_l are **m-similar** if (*i*) the initial situations are *m*-isomorphic and (*ii*) the resulting s'_l after executing m(A) at the LL is *m*-isomorphic to the resulting s'_h after executing A at the HL.



• • = • • = •

э

Consider an HL NDBAT \mathcal{D}_h equipped with a set of HL state constraint Ψ , a model M_h of \mathcal{D}_h , a LL NDBAT \mathcal{D}_l and a refinement mapping m.

Definition

We have a temporally lifted abstraction wrt m if and only if

- a model M_h of D_h m-simulates every model M_l of D_l
- for every high-level LTL trace constraint ψ , $M_h \models \exists p_h.Starts(p_h, S_{0_h}) \land Holds(\psi, p_h)$ and $D_l \models \forall p_l.Starts(p_l, S_{0_l}) \supset Holds(m_t(\psi), p_l)$

(日)

Description: We illustrate our framework addressing the problem of finding the minimum value in a singly-linked list.

LL: A list is described **deterministically** by its head and each node's value and successor. We also use an iterator and a register.

HL: We abstract details using **nondeterministic** actions: *next* (moves the cursor) and *update* (updates the register). The **environment reaction** of *next* indicates if the end is reached.

LTL Trace Constraint: $(\Box \Diamond doneNext) \rightarrow \Diamond \neg hasNext$ moving repeatedly to the next node eventually leads to the last one

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

We define AgtCanForceBylf(Goal, Cstr, f, s), meaning that the agent can force a LTL Goal by following strategy f in s if LTL path constraint Cstr holds.

Theorem

Consider a temporally lifted abstraction and a LTL goal.

If $M_h \models \exists f_h.AgtCanForcelf(Goal, Cstr, f_h, S_0)$, then there exist a refined strategy f_l such that $\mathcal{D}_l \models AgtCanForceBylf(m(Goal), True, f_l, S_0)$

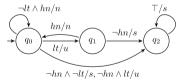
Matteo Mancanelli From Abstract Plans to Concrete Strategies

(日)

HL LTL Goal:

 $\bigcirc \Box \neg hasNext \\ \Box (lowerThan \leftrightarrow \bigcirc doneUpdate)$

The controller can be **generated automatically** by an LTL synthesis engine like Strix. By the theorem, we know that there exists a refinement of this strategy at the LL.



(4回) (4回) (4回)

э

Formal Background

2 Abstractions for Generalized Planning

イロト イボト イヨト イヨト

ъ

Deterministic Domains and Transition Systems

A deterministic domain D = (F, A, I) induces a transition system:

$$TD = (S, A, s_0, \alpha, \delta)$$

where:

- F: fluents (propositional variables)
- A: actions
- $S = 2^{F}$: set of all states
- s₀: initial state
- $\alpha(s) \subseteq A$: available actions in s
- $\delta(s, a) = s'$: deterministic state transition

A trace is a sequence:

$$s_0, a_1, s_1, \ldots, a_n, s_n$$

where each $a_i \in \alpha(s_i)$ and $s_{i+1} = \delta(s_i, a_i)$.

In the nondeterministic setting, we model the domain as a game arena:

$$TD = (2^F, A, s_0, \alpha, \delta)$$

- F: fluents controlled by the environment
- A: agent actions
- so: initial state
- $\alpha(s) \subseteq A$: actions available in s
- $\delta(s, a, s')$: environment nondeterministically picks s'

Agent: chooses action *a* Environment: chooses resulting state *s*'

・ 「 ト ・ ヨ ト ・ ヨ ト

Given a nondeterministic domain D and a goal G:

- Find an agent strategy σ_a such that, for every compliant environment strategy σ_e, we have that play(σ_a, σ_e) = s₀, a₁, ..., a_n, s_n satisfies s_n ⊨ G
- That is: G must hold at the end of every possible execution trace

Winning strategy: a strategy σ_a that guarantees reaching G regardless of how the environment behaves

・ロット (四)・ (日)・

Goal: Mechanically translate a formal specification into a program that is guaranteed to satisfy it.

Classical vs. Reactive Synthesis:

- Classical: Synthesize transformational (batch) programs
- Reactive: Synthesize controllers or protocols for ongoing interactive computation

(4回) (4回) (4回)

- Agent and environment play a game with LTL/LTL_f specs as winning condition
- Agent picks controllable output $Y \in 2^{Y}$
- Environment picks uncontrollable input $X \in 2^X$
- A round consists of both choosing their values
- A play is a finite trace τ over $X \cup Y$
- Agent decides when to stop
- Specification is an LTL_f formula φ
- Agent wins if $\tau \models \varphi$

・ 「「・ ・ 」 ・ ・ 」 ・

- LTL_f formulas can be compiled into finite-state automata
- From this, we can perform:
 - $\bullet\,$ Synthesis: create controllers that guarantee satisfaction of φ
 - Planning: build a strong policy from a FOND domain $+ LTL_f$ goal
- Both are solved as 2-player games
- Recent work extends this framework:
 - richer logics (e.g., PPLTL)
 - stochastic / fair / partially observable environments

(4月) (4日) (4日)

Overview

Context and motivation:

- Automated agent synthesis has been extensively studied in temporal logic frameworks
- LTL_f synthesis is effective for reactive systems but lacks explicit procedural constructs
- We introduce a graph-based synthesis framework tailored for procedural Golog specifications

Core Focus of This Work:

- Leveraging syntactic closure for efficient Golog synthesis
- Constructing program graphs to systematically represent program executions
- Integrating program graphs within FOND domains
- Proving the computational feasibility of our approach

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Syntactic closure: after any one-step transition, the set of all possible remaining programs is finite. Following (De Giacomo et. al., 2016), it is possible to define inductively the syntactic closure Γ_{δ_0} of a program δ_0 , as follows:

$$\begin{array}{l} \delta_0, \textit{nil} \in \Gamma_{\delta_0} \\ \text{if } \delta_1; \delta_2 \in \Gamma_{\delta_0} \text{ and } \delta_1' \in \Gamma_{\delta_1}, \text{ then } \delta_1'; \delta_2 \in \Gamma_{\delta_0} \text{ and } \Gamma_{\delta_2} \subseteq \Gamma_{\delta_0} \\ \text{if } \delta_1 \mid \delta_2 \in \Gamma_{\delta_0}, \text{ then } \Gamma_{\delta_1}, \Gamma_{\delta_2} \subseteq \Gamma_{\delta_0} \\ \text{if } \delta^* \in \Gamma_{\delta_0}, \text{ then } \delta; \delta^* \in \Gamma_{\delta_0} \end{array}$$

Theorem

The syntactic closure Γ_{δ_0} is linear in the size of the program δ_0 .

イロト イボト イヨト イヨト

Program Graph

To construct the graph \mathcal{G} of a Golog program, we leverage on the auxiliary definition of \mathcal{T} and \mathcal{F} , based on Trans and Final:

$$T(a, a) = \{(Poss(a), nil)\}$$

$$T(a, b) = \{\}$$

$$T(\varphi?, a) = \{\}$$

$$T(\delta_1; \delta_2, a) = \{(\neg F(\delta_1) \land \varphi, \delta'_1; \delta_2) \mid (\varphi, \delta'_1) \in T(\delta_1, a)\} \cup \{(F(\delta_1) \land \varphi, \delta'_2) \mid (\varphi, \delta'_2) \in T(\delta_2, a)\}$$

$$T(\delta_1 \mid \delta_2, a) = T(\delta_1, a) \cup T(\delta_2, a)$$

$$T(\delta^*, a) = \{(\neg F(\delta) \land \varphi, \delta'; \delta^*) \mid (\varphi, \delta') \in T(\delta, a)\}$$

$$\begin{array}{lll} F(a) & = & False \\ F(\varphi?) & = & \varphi \\ F(\delta_1; \delta_2) & = & F(\delta_1) \wedge F(\delta_2) \\ F(\delta_1 | \delta_2) & = & F(\delta_1) \vee F(\delta_2) \\ F(\delta^*) & = & True \end{array}$$

イロト イボト イヨト イヨト

э

Program Graph

Now we can introduce the program graph

$$\mathcal{G} = \langle \Phi \times \mathcal{A}, Q, q_0, \sigma, \mathcal{L} \rangle$$

where

- Φ is a Boolean formula over tests and Poss
- \mathcal{A} is the set of actions
- $\Phi \times \mathcal{A}$ is the alphabet
- $Q = \Gamma_{\delta_0}$ is the syntactic closure of δ_0
- $q_0 = \delta_0$ is the initial program
- $\sigma(q, \varphi, a, q')$ iff $(\varphi, q') \in T(q, a)$
- $\mathcal{L}(q) = \mathcal{F}(q)$ indicates that the state q is assigned a label according to F

• • = • • = •

Theorem

The number of nodes in \mathcal{G} is linear in the size of the program δ_0 . The number of edges in \mathcal{G} is polynomial in the size of δ_0 .

Definition

We say that a program is situation determined if

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Theorem

If δ_0 is situation determined, then

$$\sigma(q, arphi_1, \mathsf{a}, q_1') \wedge \sigma(q, arphi_2, \mathsf{a}, q_2') \wedge arphi_1 \wedge arphi_2 \supset q_1' = q_2'$$

and the characteristic graph becomes deterministic.

Example

Program: ϕ ?; *a*; (*b*; *c*)*

$$(\phi?; a; (b; c)^*) \xrightarrow{(\phi \land \mathsf{Poss}(a), a)} nil; (b; c)^* \mathcal{L} = True$$

$$\mathcal{L} = False \qquad (\mathsf{Poss}(b), b) \xrightarrow{(\mathsf{Poss}(c), c)} nil; c; (b; c)^* \mathcal{L} = False$$

・ロト ・四ト ・ヨト ・ヨト

€ 9Q@

The DFA for a FOND Domain ${\cal D}$ is:

$$\mathcal{A}_{\mathcal{D}} = \langle 2^{\mathcal{F} \cup \mathcal{A}}, 2^{\mathcal{F}} \cup \{ \textit{s}_{\textit{init}} \}, \textit{s}_{\textit{init}}, arrho, \mathcal{F}
angle$$

where:

- $2^{\mathcal{F}\cup\mathcal{A}}$ is the alphabet (actions \mathcal{A} include dummy *start* action)
- $2^{\mathcal{F}} \cup \{s_{init}\}$ is the set of states
- *s*_{init} is the dummy initial state
- $F = 2^{\mathcal{F}}$ (all states of the domain are final)
- $\varrho(s, (a, s')) = s'$ with $a \in \alpha(s)$ and $\rho(s, a, s')$

伺下 イヨト イヨト

Taking the cross product of δ_0 and the FOND domain ${\cal D}$ we get

$$A = \langle \mathcal{A} \times 2^{\mathcal{F}} \times \mathsf{\Gamma}_{\delta_0}, \mathsf{\Gamma}_{\delta_0} \times 2^{\mathcal{F}}, (\delta_0, \mathsf{s_0}), \mathit{Tr}, \mathit{Fin} \rangle$$

where

- $\mathcal{A} \times 2^{\mathcal{F}} \times \Gamma_{\delta_0}$ is an alphabet
- $\Gamma_{\delta_0} \times 2^{\mathcal{F}}$ is a set of states
- (δ_0, s_0) is the initial state
- $Tr((\delta, s), a, s', \delta') = (\delta', s')$, where $\exists \varphi . \sigma(\delta, \varphi, a, \delta') \land s \models \varphi$ and $\rho(s, a, s')$, is the transition function
- $Fin = \{(\delta, s) \mid s \models F(\delta)\}$ is the set of final states

・ 「「・ ・ 」 ・ ・ 」 ・

1

Theorem

If δ_0 is situation determined, then

$$Tr((\delta, s), a, s', \delta'_1) \wedge Tr((\delta, s), a, s', \delta'_2) \supset \delta'_1 = \delta'_2$$

If δ_0 is situation-determined, we can simplify the DFA into:

$$A = \langle \mathcal{A} \times 2^{\mathcal{F}}, \mathsf{\Gamma}_{\delta_0} \times 2^{\mathcal{F}}, (\delta_0, s_0), \mathit{Tr}, \mathit{Fin} \rangle$$

where

- $\mathcal{A} \times 2^{\mathcal{F}}$ is an alphabet
- $Tr((\delta, s), a, s') = (\delta', s')$, where $\exists \varphi. \sigma(\delta, \varphi, a, \delta') \land s \models \varphi$ and $\rho(s, a, s')$
- $Fin = \{(\delta, s) \mid s \models F(\delta)\}$

イロト イボト イヨト イヨト

э